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Andreas Greiner a,∗, David Kauzlarić a,b, Jan G. Korvink a,b, Richard Heldele c, Michael Schulz c,
Volker Piotter c, Thomas Hanemann c,d, Oxana Weber c, Jürgen Haußelt c,d

a Laboratory for Simulation, Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany
b School of Soft Matter Research, Freiburg Institute for Advanced Studies, University of Freiburg, Albertstr. 19, 79104 Freiburg, Germany

c Institute for Materials Research III, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
d Laboratory for Materials Process Technology, Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg,

Germany

Available online 3 March 2011

bstract

e report on our development of a computational tool for the simulation of micro powder injection moulding (micro-PIM) based on a description
f the fluid flow by the smoothed particle hydrodynamics (SPH) method. The feedstocks used in micro-PIM expose rather complicated rheological

eatures. Insertion of appropriate material models is discussed, as, e.g., the yield stress behaviour. Insight is gained into the moulding process
hrough simulation of the injection into a bending specimen with an obstacle in the flow as an example. The effect of shear induced migration is
hown to be reproduced and compared to the segregation phenomena arising in experimental findings.

2011 Elsevier Ltd. All rights reserved.
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. Introduction

Besides the silicon-world of MEMS (micro electro mechani-
al systems), a great need exists for micro-structured polymers,
etals, and ceramics. The application areas range from DNA

nalysis instruments in life science over biocompatible materi-
ls for medical applications to a variety of electronic devices for
ensors and actuators. Micro powder injection moulding (micro-
IM) 1 is a popular process for the micro-structuring of pure
olymers or polymeric feedstocks with ceramic or metallic par-
icle load. In order to reduce production costs there is a need for
redictive process simulation.

There are a variety of finite element(FE)-based simulation
pproaches.2,3,4,5,6,7 A comparison of commercially available
odes can be found in the work of Bilovol et al.8 Usually, their
isadvantage is the difficulty in handling free surfaces and large

eformations. A meshless modeling is presented in Bernali et al.
for a Hele–Shaw flow in fluid injection in cavities.

∗ Corresponding author. Tel.: +49 761 2037384; fax: +49 761 203 7437.
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logical models

On the other hand, particle-based approaches are able to
eal with free surfaces and large deformations easily. Instead of
eshing the domain, these methods subdivide the material itself

nto small portions (“particles”) which are allowed to move rel-
tive to each other. In this work we apply the method smoothed
article hydrodynamics SPH 10,11,12 to the simulation of the
icro-PIM process.
The simulation of casting with SPH was already successfully

erformed.13,14 Here, we have to apply this method to materials,
hich are rheologically more complex. Therefore, we focus on

wo major effects occuring in the micro-PIM process leading
o a high risk of failures or defects: the critical yield stress of
he used feedstocks and the shear induced segregation of the
mbedded powder particles.15,16,17

Kwon and Park 18 considered the yield-stress in their filling
imulations by extending the viscosity model and discovered a
onsiderable effect on the clamping force. Alexandrou et al.19

ade a thorough analysis of inertial, viscous and yield-stress
ffects for a 1:5 expansion flow. For this geometrical set-up

he biggest influence on the flow pattern that can be ascribed
o the presence of a yield-stress was observed for Reynolds
umbers larger than unity. In micro-PIM, the Reynolds num-
ers are generally smaller than unity. Nonetheless, in Section

dx.doi.org/10.1016/j.jeurceramsoc.2011.02.008
mailto:andreas.greiner@imtek.uni-freiburg.de
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, we will be able to reproduce a complex filling pattern of the
icro-PIM process by implementing a yield-stress model in the
PH-simulation.

For the injection moulding of powder filled feedstocks, a
omogeneous distribution of powder particles is crucial in order
o avoid cracks, porosity or distortions in the produced parts.20

he extremely high shear rates of up to 106 s−1 in micro-PIM
ay lead to powder binder segregation. This may lead to non-

omogeneous binder extraction during the debinding step or to
n anisotropic shrinkage during the sintering step resulting in
racks or deformations. Barriere et al.,3 accounted for segrega-
ion in a FE-simulation by implementing a two phase model.
n this work, we present a SPH-based approach describing the
owder concentration as an internal degree of freedom. To this
nd we briefly discuss the respective equations of motion for the
eedstock to be applied. The SPH discretisation of these equa-
ions of motion will be summarised together with a discussion
f the boundary conditions for all degrees of freedom and their
uxes. A model for yield stress materials and for shear induced
owder migration will be explained together with its tests and
ts application to relevant micro-PIM problems. For both cases
he results are compared with experimental findings.

. Governing equations of motion

The basic equations used for the description of the micro-
IM-process are the continuity equation for the density ρ

dρ

dt
= −ρ∇ · v (1)

here v is the velocity field vector, and the incompressible
avier–Stokes equation

dv
dt

= −∇P

ρ
+ 1

ρ
∇ · (η∇v) (2)

oth given in a Lagrangian reference frame, with pressure P and
iscosity η.

Notice the differences to the usual underlying equations of
otion for finite element simulations: (i) For SPH, we require a

escription in the Lagrangian material frame of reference instead
f the fixed in space Eulerian frame. (ii) Eq. (1) allows for den-
ity fluctuations instead of assuming strict incompressibility.
iii) In Eq. (2), incompressibility is approximated by a weakly
ompressible equation of state21

(ρ) = P0

[(
ρ

ρ0

)γ

− 1

]
, (3)
here γ = 7, ρ0 is a reference density and P0 = c2
s ρ0/γ , with

he speed of sound cs chosen large enough so that density fluc-
uations remain small. l
eramic Society 31 (2011) 2525–2534

. SPH discretisation

The basis of SPH is the interpolation idea that an arbitrary
unction f (r) of the position r may be expressed by 10,11

(r) =
∫

f
(
r′)W

(
r − r′) dr′ (4)

here W
(
r − r′) is an interpolation function with finite support

nd its volume-integral is normalised to unity.
Given (4) a so-called finite interpolation method is introduced

y replacing the integral by a sum over a finite set of points
r “particles” distributed in space and f (r) is replaced by the
article-centred value fi, i.e.,

i =
∑

j

mj

ρj

fjWij (5)

here mj is the mass of the particle and ρj its associated
ocal density. Additionally, Wij = Wrc

(
rij

)
with rij = ri − rj,

nd where ri and rj are the positions of particles i and j, respec-
ively, and the width rc of the interpolation function is of finite
ize.

Eq. (5) can be applied to directly compute the local density
i around a particle i to read

i =
∑

j

mjWij (6)

Note that the finite size of rc makes the sum over j similar
o the procedure applied in molecular dynamics, weighting the
ontributions of the neighbouring particles j to the interpolation
ithin a cutoff radius rc.
In order to represent derivatives like, e.g., (∇f )i needed for

he discretisation of (1) and (2), we apply (4) and (5) and integrate
y parts to get

∇f )i =
∑

j

mj

ρj

fj∇Wij (7)

To compute the evolution of the densities ρi of the SPH-
articles we discretise the equation of motion (1), i.e.,

˙ i =
∑

j

mjvij · ∇Wij = −
∑

j

mjvij · rijwij (8)

here we have set vij = vi − vj and ∇Wij = −rijwij . In contrast
o (6), this allows to simulate free surface flow.21 The surfaces
ill be approximated to be stress-free. This, in combination with

he equation of state (3), defining an initial reference density
0 for each particle, results in a vanishing pressure at the free
urface. The discretisation of the pressure gradient term in Eq.
2) reads

(∇P)i
ρ

=
∑

mj

(
Pi

2 + Pj

2

)
∇Wij. (9)
i
j

ρi ρj

This expression is anti-symmetric and therefore conserves
inear and angular momentum exactly.
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The discretisation of the viscous term in the momentum equa-
ion (2) reads22

1

ρ
∇ · (η∇v)

]
i

= −
∑

j

mj

4ηiηj

ηi + ηj

wij

ρiρj

vij. (10)

his form takes care of strong local jumps in η.

. Boundary conditions

Three types of boundaries are important: solid walls, inflows,
nd free surfaces of the material. For all boundary conditions at
olid walls it is assumed that there is a layer of so-called bound-
ry particles. This layer is situated outside of the domain of
nterest. It has a thickness of one support rc of the used interpo-
ation kernel, i.e., the layer is built such that all created particles
ave at most a distance of rc to the closest wall segment. The
mplementation of viscous forces near solid walls and near free
urfaces have to be considered. For walls a no-slip condition is
mplemented by applying the technique of Morris et al.23 which
as extended to arbitrarily shaped mould wall geometries.24 At

ree surfaces of the feedstock a stress free boundary condition
s assumed.

We assume a no-slip condition even though slip at the walls is
ikely to occur.25 The simulation results shown later show that
he yield model leads to a reduction of the effective viscosity
lose to walls and to a slip effect which is very similar to the one
f an explicit slip-layer model.18 Nonetheless, the additional
ffect of slip on yielding and segregation should certainly be
nvestigated in more detail in the future. Further experimental
esults not shown in this work, indicate that the yield stress
ffect presented here, also occurs in situations where slip may
e definitely excluded.

For particle methods, inflow conditions for moving particles
nto non-periodic domains are usually realised by a reservoir
nd either a piston or a force representing gravity. The reservoir
ust contain enough particles in order to be able to fill the actual

omain of interest which is initially empty. A computationally
ore efficient approach is briefly described in the following

details may be found in Kauzlarić24):
For the case of a constant inflow velocity initially, a regular

ayer of SPH particles is created. The particles are assigned the
elocity vin in inflow direction. The thickness of the layer in the
nflow direction must be at least one kernel support rc. Initially,
hese fluid particles move with their assigned constant velocity
nd do not interact with their neighbouring SPH particles. In the
implest case of a cubic lattice, with a layer of thickness rc, after
time-period τ = rc/vin a new row of SPH particles is created.
uring their initial motion with the constant velocity vin, the
PH particles pass a virtual barrier from which on they behave

ike usual SPH particles and exchange mass and momentum with
heir neighbours.

Besides the computational efficiency, a second advantage of
his approach is that, in contrast to a piston, it indeed represents

constant inflow condition. Hence, the SPH-simulations can be
asily compared to mesh based simulations where these kinds
f boundary conditions are standard.

c
b
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. A model for yield stress

An important characteristic of most polymer-powder com-
ounds is the observation of a critical yield-stress. Below
his threshold, the material experiences no plastic deformation.
herefore a yield-stress model is implemented into the SPH-

ramework in this section.
Many powder-filled feedstock systems possess high viscosi-

ies leading to Reynolds numbers Re < 1, especially for micro
arts with small dimensions.1 For this regime of Reynolds num-
ers, no matter whether yield-stress is considered or not, the
o-called “mound-filling” pattern is observed for a 1:5 expan-
ion flow in Alexandrou et al.19. But this does not permit the
onclusion that the presence of a yield-stress is generally irrele-
ant for low Reynolds numbers. The motivation for including the
ield-stress effect into the simulation of micro-PIM is the exper-
mentally observed undesirable splitting effect in a channel with
cylindrical obstacle presented in Section 7.1.

.1. Viscosity regularisation

A rigorous mathematical description of a yield-stress material
s the Bingham model 26,27. It states that

=
(

η0 + τy

γ̇

)
�̇, τ > τy (11)

˙ = 0, τ < τy (12)

here � and �̇ = ∇v + (∇v)T are the extra-stress and strain rate
ensors, respectively, and

=
√

1

2
� : �, γ̇ =

√
1

2
�̇ : �̇, (13)

epresent the corresponding second invariants. The plastic vis-
osity of the yielded material is denoted as η0.

This model strictly separates the material into a liquid domain
ith apparent viscosity ηa = η0 + τy/γ̇ and a solid domain.
oth domains are separated by the yield-surface defined through

he points ry where τ
(
ry

) = τy.
To overcome the difficulties for unsteady flows and complex

eometries due to the divergence of ηa for γ̇ → 0, the discon-
inuity of the Bingham model and the interdependence of the
ield-state and the velocity field, several modifications have been
roposed that are continuous and applicable to both the yielded
nd unyielded domain simultaneously 28,29. The basic idea of all
hese models is to replace Eq. (12) describing the solid domain
y an expression for the stress τ in terms of a large viscosity. In
his work the bi-viscosity model by O’Donovan and Tanner28 is
sed which approximates Eqs. (11) and (12) by

=
(

η0 + τy

γ̇

)
�̇, γ̇ > γ̇c (14)

= ηs�̇, γ̇ ≤ γ̇c (15)
Still, the stress is piecewise defined, but now, in terms of a
ritical shear rate γ̇c. The viscosity ηs = αη0 approximates the
ehaviour of the unyielded material, where α = 1 + τy/(γ̇cη0)
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hould be large enough or equivalently, γ̇c should be small
nough.

For the SPH-discretisation we have to take care since the vis-
osity is now a function of the shear rate γ̇ . Since it is in the nature
f yield stress materials that yielded and unyielded domains are
n close contact to each other, the effective viscosity can change
apidly in space. Therefore, the viscous interaction (10) is used,
hich allows for large differences in the transport coefficients

i and ηj, in contrast to simpler discretisation approaches.12

We test the SPH-discretisation of the bi-viscosity model in a
imulation of pressure driven Poiseuille flow between two par-
llel plates with a distance of 2 mm. The obtained steady state
elocity profiles are shown in Fig. 1 for the two resolutions of 8
nd 16 particles in the cross-section. For comparison, the New-
onian velocity profile for a resolution of 16 particles is also
lotted.

The steady state solution is a partially yielded material. Due
o the large difference in the viscosities of the yielded material
nd the unyielded material, the velocity profile in the unyielded
omain is virtually flat as it should be for both resolutions. Just
he transition zone between the yielded and the un-yielded mate-
ial shows a curvature due to the smoothing properties of the
PH-discretisation and since the bi-viscosity model extends the

deal yield surface to a yield region.

. A model for shear induced powder migration

Segregation will be described by a continuous mean parti-
le density φ. This description will be correct as long as we
ay assume that a small fluid volume represented by one SPH-

article contains many powder particles. The validity of this
ssumption is a consequence of the used micrometer sized pow-
ers in micro-PIM.

We have chosen to implement the diffusive flux model by
hilips et al.30 into the SPH framework. This model is based

n two diffusive fluxes Jc and Jη of a mean concentration of
uspended particles φ. Jc includes the migration mechanisms
eramic Society 31 (2011) 2525–2534

ue to local variations in the collision frequency of the suspended
articles and reads

c = −Dca
2φ∇(φγ̇) = −Dca

2(φ2∇γ̇ + φγ̇∇φ) (16)

since variations in the collision frequency are caused by con-
entration gradients ∇φ and variations in the shear rate ∇γ̇ . Dc

s a diffusion constant and a is the particle diameter making the
iffusion constant dimensionless. The diffusion constant has to
e fitted experimentally and is therefore an empirical parameter.

In addition a spatially varying viscosity due to a spatially
arying particle concentration can lead to an effective particle
ux as well. The corresponding flux reads

η = −Dηγ̇φ2
(

a2

η

)
∂η

∂φ
∇φ (17)

here Dη is an empirical dimensionless rate constant.
Using both migration mechanisms the conservation equation

or the volume fraction φ becomes

∂φ

∂t
= −∇ · (φv) − ∇ · (Jc + Jη) (18)

he expression ∇ · (φv) covers the convective transport of the
uspended particles.

Instead of discretising Eq. (18) directly, it is more convenient
o use the equation of motion for the volume Vφ = φ/ρ occupied
y powder particles, where we have set the mass to m = 1m∗
or simplicity, i.e., to the unit of mass m∗ used in the simu-
ation. The discretised equation for Vφ will be antisymmetric
nder exchange of fluid particles, which means exact volume
onservation. Applying the SPH-discretisation formalism leads
o14

˙
φ,i = −Dca

2
∑

j

wij

ρiρj

(φi + φj)(φiγ̇i − φjγ̇j)

− Dηa
2
∑

j

wij

ρiρj

(
γ̇iφ

2
i

(
dη

ηdφ

)
i

+γ̇jφ
2
j

(
dη

ηdφ

)
j

)
(φi − φj) (19)

For the dependence of the viscosity on the volume fraction
e assume the Krieger rheological model31 which is

(φ) = η0

(
1 − φ

φm

)−c

, (20)

pecifically with a saturation volume fraction of φm = 0.68 and
scaling factor of c = 1.82. These values have been determined

xperimentally for hard spheres.30 For a vanishing particle con-
entration the fluid has the reference viscosity η0. The derivative
ith respect to φ becomes
η ∂φ
=

φm − φ
. (21)
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.1. Verification

The model is verified through computation of the concentra-
ion profile for Poiseuille flow to test the coupling to the flow
eld and to serve for a comparison to experimental results.

We analyze the migration of powder particles in pressure-
riven Poiseuille flow between two parallel plates. The full set
f equations is computed, i.e., the time evolution of the velocity
eld is coupled to the evolution of the powder concentration (18)
y the concentration dependence of the viscosity (20) and the
ependence of the fluxes Jc (16) and Jη (17) on the shear rate γ̇ .

We choose dx = 250 �m as the width of the cross-section in
-direction. This width corresponds to the experimental setup
or which measurements from computer tomography (CT) are
vailable.

The velocity component vy is driven by a constant pressure
radient py = 1.28 MPa/cm which is implemented by applying
n equivalent body-force on each SPH-particle in the periodic
ow direction. The specific value depends on the resolution of

he discretisation.
The particle diameter is taken to be a = 9 �m, the constant

c = 1.17 × 109 is chosen such that the time constant for reach-
ng steady state is as small as possible and the ratio is Dc

/
Dη =

.6454. The latter allows to compute an analytic solution for the
teady state concentration profile for comparison.30

The simulation domain is discretised by SPH-particles which
re initially at rest on a cubic lattice. The cross-section in
-direction is discretised with two different resolutions of 9
nd 19 SPH-particles. For 19 particles, the viscosity range of
pproximately [η (φ0) , 1000η (φ0)] allows for a timestep of
t = 6.60 × 10−12 ps.
The simulation is performed in 3D with periodic bound-

ry conditions in the flow direction y and in z-direction. The
-direction is confined by solid boundaries. For the velocity
o-slip boundary conditions are applied at the walls. For the
oncentrationφ we assume that there is no flow across the bound-
ries. This is realised by forbidding any exchange of φ between
he SPH-particles representing the liquid and the SPH-particles
epresenting the solid walls.

Fig. 2 shows the profiles of the powder concentration, the
elocity and the shear rate for steady-state. The analytic solution
or the concentration is plotted as well.

Basically one can observe that the solid migrates to the centre
f the channel and that the velocity profile is blunted. The latter
s due to an increased viscosity in the centre because of the larger
olids concentration. Consequently, the characteristic shear rate

˙ is no piecewise linear function anymore as it would have been
or a parabolic velocity profile. As a consequence there is a back
oupling of the powder migration on the flow behaviour. This
hows that it is crucial to add the degree of freedom φ describing
he powder concentration. By just estimating the powder migra-
ion from the shear fields it is not possible to account for its
ffect on the rheology.

A comparison of the computed concentration with the ana-

ytic solution shows that the computed result does not fully reach
= φm = 0.68 at the peak. The reason is the smoothing of the SPH

nterpolation. As a consequence, due to mass conservation, the

t
c

t

ymbols represent the values of the corresponding SPH-particles while the lines
re for guiding the eye.

oncentration at the walls is larger than φ = 0.45 as would have
een expected from the analytic solution. It can be seen that
he error decreases when increasing the resolution from 9 to 19
articles in the cross-section.

.2. Poiseuille flow vs. CT-measurement

In order to compare with the experiment we choose η0 = 33.2
as, φm = 0.794 and c = 0.714 for the Krieger model (20). One
btains a “mean” viscosity η

(
φ̄
) = 100 Pas, where φ̄ = 0.625

nd the pressure gradient py accelerates the SPH-particles to a
elocity of the order of centimeters per second (cf. Fig. 2), which
s a realistic value for the micro-PIM process. The values for
¯ , φm, c = 0.7014 and η

(
φ̄
)

have been obtained from viscosity
easurements.17 The remaining simulation parameters are kept

he same as in Section 6.1.
Fig. 3 shows the transient evolution of the powder concentra-

ion as obtained from the simulation and, below, a measurement
f powder segregation by computer tomography (CT). Here, a
olyethylene/wax based feedstock with a steel powder (average
article diameter 6.6 �m) was used. The large particle diameter
as necessary for the CT. The compounding and the feedstock
roperties are well described in Refs. [15,32].

In the simulation, steady state of the velocity profile is reached
fter t ≈ 1.98 �s = 300t∗ where t∗ ≈ 6.6 ns is the unit of time of
he simulation. The concentration profile reaches steady state
fter t ≈ 0.99 �s. Fang and Phan-Thien33 observed that the
elocity equilibrates faster. In the simulations presented here,
he equilibration of φ was boosted by purpose by choosing large

onstants Dc and Dη.

Segregation starts close to the walls and propagates towards
he centre where, around t = 7t∗ a cusp starts to grow. Around
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Fig. 3. (Top) Transient evolution of the powder concentration for Poiseuille
flow. The time is given as multiples of the time unit t∗ = 1000	t = 6.6 ns. The
graph on top shows the evolution of the concentration profile until the steady
state is reached at t ≈ 300t∗. The results were obtained with 19 SPH-particles in
the cross-section. The symbols represent the values of the corresponding SPH-
particles while the lines are for guiding the eye. (Bottom) CT-measurement of
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owder segregation.17

= 16t∗ the profile has certain similarities with the experimental
esults 17 shown in Fig. 3 below. This indicates that steady state
ight never be reached during the micro-PIM process, i.e., the

onger the channel, the larger the segregation. This implies that
quantitative reproduction of the experiment in terms of correct

ime scales requires a reduction of the absolute values of Dc and
η in the simulation.
In contrast to the one-dimensional profile obtained from

he simulation, the CT-measurements were performed for a
uadratic cross-section. In addition, the flow situation in the
xperiment is not as well defined as in the simulation. The first
eason is that the injection gate is relatively close to the location
f the measured cross-section. Additionally the flow-history of
he material before taking the CT-snapshot is not well known,
ncluding the time, the material experienced considerable shear
ates leading to the observed segregation.

Nonetheless a qualitative comparison between the simulation
nd the centre-line of the quadratic cross-section is possible. For
quantitative comparison and a quantitative determination of the
oefficients Dc and Dη, the timescales of the flow history must
e determined. The exact ratio D /D can be determined by the
c η

easurement of a quasi-stationary situation,30 which is admit-
edly difficult for the micro-PIM process. Pressing the feedstock
hrough long capillaries and measuring the concentration profile

t
s
m

ig. 4. Geometry considered for the filling simulation. The feedstock is assumed
o enter the domain with a constant uniform velocity vin.

or cross-sections at different locations along the length might
eliver the required results.

It is worth to mention, that a peak close to the centre of a rect-
ngular channel was observed as well in CT-measurements.17 It
s too early to start to interpret this as the peaks observed in the
hillips model and it is worth to enlarge the amount of measured
T-data in order to be able to make assured statements which go
eyond the proof that migration in a channel is directed towards
he centre.

We wish to strongly emphasise that Fig. 2 shows a steady-
tate situation for t → ∞ which will never be observed in the
xperiment. For a comparison with the experiment, the interme-
iate profile from Fig. 3 should be considered, which is quite
lose to the measurements. The intermediate profiles usually
how a weaker segregation than the steady state. Nonetheless it is
ignificant. An even better quantitative agreement was obtained
y optimising the ratio of the Phillips parameters Dc and Dη,
hich is shown elsewhere.34

. Case studies

We present two case studies in this section, one applying
he yield-stress model, and one applying the powder migra-
ion model, respectively. Section 7.1 shows the reproduction
f the experimental observation which was the motivation for
he incorporation of a yield-stress model, namely the splitting
f a feedstock filling a channel with a cylindrical obstacle. Sec-
ion 7.2 illustrates the effects of powder segregation in a mould
eometry of complex shape.

.1. Yielding around a cylinder: experiment and simulation

The relevance of the inclusion of a yield-stress model and
he qualitative correctness of the chosen approximation by an
ffective shear rate dependent viscosity is demonstrated by
eproducing an observation from micro-PIM experiments. The
elevant characteristics of the geometry are shown in Fig. 4.

Fig. 5(a) and (b) visualise the filling pattern for two different
owder concentrations of the used feedstock by images of parts
esulting from partial filling.17 The feed rate was kept constant at
˙ = 4 cm3/s in both experiments. The details of the feedstock
re given in Ref. [32].

The temperature of the feedstock was 140◦C. The tempera-

ure of the mould in the experiment was set to 50◦C 35, while the
imulation was isothermal at the feedstock temperature. This is
ost likely the explanation for the detachment of the feedstock
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Fig. 5. Application of the yield-stress model from Section 5 to the filling of a geometry with cylindrical obstacle. Figures (a) and (b) show the experimentally obtained
filling patterns for feedstocks with a powder concentration of 40 vol.% and 55 vol.%, respectively. Total mould volume: V = 2.4 cm3. Feed rate: V̇ = 4 cm3/s.
Figures (c) and (d) show the simulations with a small and a large effective yield-stress, respectively. Blue SPH-particles indicate yielded material with low effective
viscosity while red particles indicate unyielded material with large effective viscosity. (For interpretation of the references to color in this figure legend, the reader is
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eferred to the web version of the article.)

rom the mould wall as observed in the experiment but not in
he simulation (cf. Fig. 5), where it would have to be modelled
y more complex boundary conditions. The detachment of the
eedstock from the mould wall seems to be an effect of the cool-
ng down of the feedstock. Preliminary experimental results for
mould wall temperature equal to the feedstock temperature of
40◦C do not show any detachment but still the splitting effect
t the cylindrical obstacle.

While an intuitively expectable shape is obtained for a powder
oncentration of 40 vol.%, a permanent splitting of the flow front
s observed for a powder concentration of 55 vol.%.

Note that this large variation of solid content was indeed pos-
ible for the used feedstock. At both powder concentrations, the
eedstock was well characterisable and the mould filling under
he chosen process parameters was possible. Of course the mate-
ial properties of the produced part may be very different. But
ere, the only purpose of the large variation of the powder con-
entration was the comparison of mould filling experiments with
he results of the filling simulations of the yield stress model.

It is known from measurements that the yield stress of the
eedstock increases with the powder concentration.17 Hence, in
ig. 5(b) the fraction of unyielded material might have increased

eading to the observed change in the filling pattern.
This hypothesis is tested by SPH-simulation and by applica-

ion of the yield-stress model from Section 5. We concentrate on
he yielding behaviour of the material since we believe it to suf-
ce for the explanation of the observed splitting effect. Therefore
dditional shear-thinning of the feedstock at large shear rates is
gnored.

The experimental results presented in Fig. 5(a) and (b) basi-
ally show a 2D-effect. Therefore it is legitimate to reduce the
imulation to a 2D-problem as shown in Fig. 4. The total width
f 6 mm is resolved by 24 SPH-particles in order to obtain a
esolution of at least eight SPH-particles for the 2 mm gaps.

The inflow condition is approximated by a constant inflow-
elocity of the SPH-particles, i.e., by a Dirichlet boundary

ondition vin = 14.5 cm/s = const. on the left boundary of the
ectangular 2D-domain (cf. Fig. 4). The velocity vin is chosen
s in the experiment.

w
t
γ

The upper and lower boundaries represent walls of the mould
eometry. Additionally there is a cylindrical obstacle in the cen-
re of the channel, and a wall far-off at the right end. At all walls
e assume a no-slip condition vw = 0 even though slip at the
alls is likely to occur.25 The simulation results in Fig. 5(d)

how that the yield model leads to a reduction of the effective
iscosity close to walls and to a slip effect which is very similar
o the one of an explicit slip-layer model.18

For low shear rates, the flow viscosity of the used feedstock
s of the order of η0 = 1000 Pas.17 Therefore, assuming a shift
f the effective viscosity of three orders of magnitude for the
odelling of the unyielded regime requires a maximum viscosity

f ηs = 106 Pas for the simulation.
For a width of h ≈ 250 �m, ηs, and the mass density ρ = 3200

g/m3 we can estimate the allowed integration time step 	t to
e of the order of 10−11 s. For a process time of the order of
undreds of milliseconds, this leads to unacceptably long simu-
ation times for the currently applied time-integration algorithm.
he algorithmic optimisation is beyond the scope of this work.
herefore, we solve this problem with a scaling argument as

ollows.
For the size of the two dimensional system regarded here,

t ≥ 10−6 s is still acceptable in order to get computing times
n the order of hours on a single processing unit. In terms of
he Reynolds number Re = ρvd/η, we get Re(ηs) ≈ 10−7 and
e(η0) ≈ 10−4. It can be expected that, as long as we remain

n the laminar flow regime, increasing the Reynolds number
hould not spoil the yield-effect we wish to observe. Increas-
ng 	t by five orders of magnitude to the feasible 	t = 10−6s
ives Re′(η′

0) ≈ 101, which is still in the range of laminar
ow. This can be achieved by decreasing the viscosities to
′
0 = 10−2 Pas and η′

s = 10 Pas. Hereby we preserve the ratio
s/η0 = η′

s/η
′
0 = 1000.

The bi-viscosity model (15) is used with these two effec-
ive viscosities as the parameters for the description of the
nyielded and yielded domain. Two simulations are performed

here the critical shear rate describing the transition between

he unyielded and the yielded domain is set to γ̇c = 0 s−1 and
˙c = 0.9 s−1, respectively. The latter was estimated by moni-
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Fig. 6. Segregation in a complex geometry. (a) Test geometry for the simulation of the injection process. (b) Solids load in an early stage of the mould filling. (c)
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olids load in a later stage.

oring the shear rates of the first simulation with γ̇c = 0 s−1,
.e., of the completely Newtonian liquid with η = const.. For
˙c = 0.9 s−1, a coexistence of yielded and unyielded domains
hould be observed.

Fig. 5(c) and (d) shows the resulting flow patterns for γ̇c =
s−1 and γ̇c = 0.9 s−1, respectively. Blue SPH-particles pos-

ess a low effective viscosity close to η′
0 while red particles

epresent domains with large effective viscosity closer to η′
s. In

d), the expected coexistence of yielded and unyielded domains
an be observed. Simultaneously, the flow pattern changes con-
iderably and is in accordance with the experimental findings
hown in figures (a) and (b). This effect may also coincide with
egregation phenomena as the binder segregation will be higher
n the high shear regions and thus the tendency to yield in these
egions is higher. Hence, combining the yield stress model and
he powder migration model, should be a next step following the
ork presented in this paper.
In Fig. 5 (d) one can observe that the yielded regime is very

arrow and concentrated to the regions close to the walls of the
ould where the highest shear rates occur. The shear planes have

ess viscous contact close to the walls leading to a slip-like effect.
s a consequence the bulk material slides along a quasi slip-

ayer. In the interior of the bulk material the shear planes have
strong viscous contact leading to an almost negligible inte-

ior deformation. The viscous contact between the shear planes
n the Newtonian case in figures (a) and (c) is more homoge-
eous. Therefore, the observed filling pattern corresponds to the
ne observed for Newtonian liquids. The introduction of shear
hinning is expected to lead to only minor deviations from the
ewtonian behaviour because the change of the viscosity is less

teep than in a yield-stress model.
One might argue that the observed one-particle layer in Fig. 5

d) could as well be a numerical artifact. Two facts support the
esult is physical. First, it was observed that increasing the par-
icle resolution, increases the number of particles in the layer.
econd, near the cylinder, i.e., at the region with the largest shear
ates, the yielded layer with low viscosity gets thicker, even for

he given low resolution. Examining directly the shear rates (not
hown here) also shows reasonable values. The value of the vis-
osity is just the consequence of the values of the shear rate.

v
T
t
a

onetheless, more detailed convergence studies by varying the
article resolution would be useful.

For the flow pattern observed in Fig. 5 (d) a coexistence of
ielded and unyielded material is essential. The recommenda-
ion to the process engineer is therefore to avoid such a flow
ituation, at least for the presented geometry. In practice this
eans to either increase the shear rates by increasing the feed

ate, or to reduce the critical yield-stress by decreasing the pow-
er concentration. An optimal compromise has to be found
ecause, on the other hand, increasing the feed rate will lead
o a larger segregation of the solid fraction (cf. Section 6) while

lower powder concentration complicates the debinding and
intering processes.36 Modifications of the binder chemistry can
elp to optimise the rheology without changing the solids load.17

.2. Segregation in a complex geometry

As a more complex application of the powder migration
odel from Section 6 we consider the simulation of injection
oulding into a test geometry as depicted in Fig. 6(a). We con-

entrate on the region marked by the dashed rectangle. The arrow
ndicates the gate of the mould geometry and the flow direction.

Fig. 6(b) is a snapshot of an early stage of the injection. In
his stage, the velocity field in the volume directly behind the
ate is still inhomogeneous, i.e., there is a strong shear field. The
istribution of the solids load indicates an aggregation at convex
orners (i.e., pointing into the mould material) and a decrease at
oncave corners (i.e., pointing into the cavity). This is intuitively
nderstandable since the shear rate in the proximity of convex
orners should be lower than in the bulk of the geometry. On the
ther hand, concave corners are regions of large shear rates.

In later stages of the filling, the flow in the volume close
o the gate becomes more homogeneous and directed towards
he two arms at the top and the bottom. In these arms strong
hear rates occur since they are very narrow. The effect can be
een in Fig. 6(c). The concentration in the part of the entrance

olume behind the two arms is rather homogeneous and large.
he concentration in the front part is a few percent lower since

his is the region where the feedstock is still flowing towards the
rms and undergoes shearing motion. Inside the arms the average
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oncentration is even lower. This indicates that a larger fraction
f the solid particles prefers to stay in the entrance volume where
hear rates and flow velocities are lower. Additionally, the solids
oad has a maximum in the centre of the arms as already observed
arlier for flow in a channel.

It should be noticed that, in the presented simulations, we did
ot consider full or partial solidification of the material. This is
he reason why the inhomogeneities from Fig. 6(b) are able to
isappear or are replaced by other types of inhomogeneities. If
he material solidified at least partially in the entrance region,
.g., in the right part, the inhomogeneous solids load would be
rozen in. In the worst case, all observed inhomogeneities could
ccur simultaneously, eventually leading to cracks or deforma-
ions during the sintering step.

. Summary and discussion

An SPH-framework was developed which allows to simu-
ate the injection process of micro powder injection moulding
micro-PIM). As shown, the simulations are not limited to aca-
emic problems but can be performed in arbitrarily complex
eometries. For this purpose, boundary conditions used in SPH
ave been generalised to be applicable in a domain which is
ounded by flat arbitrarily arranged wall segments. In addition,
n efficient inflow boundary condition was developed which
mits the usage of large particle reservoirs and pistons.

Two major effects in micro-PIM, effects due to an inherent
ield stress and shear induced powder migration were investi-
ated. A yield-stress material was modelled by means of the
i-viscosity 28 approach.

The simulations successfully reproduce partially yielded
teady state velocity profiles as well as an experimental obser-
ation of splitting in a channel with cylindrical obstacle.

Shear induced powder migration was incorporated by means
f Phillips’ diffusive flux model.30 This model was discretised
y formulating an SPH-equation of motion for the occupied
olume Vφ with exact pairwise conservation properties. The sim-
lations correctly predict powder migration to regions with the
owest shear rates. For injection moulding into complex geome-
ries the simulations help to predict an accumulation of the
olids fraction at convex corners (pointing outside of the cavity)
nd a depletion at concave corners (pointing inside the cavity).
or a quantitative matching of the transport coefficients Dc and
η of the Phillips model we suggest CT-measurements of the
owder-concentration for well defined geometries such as long
apillaries.

This work has focussed on two crucial effects, namely, yield-
ng and segregation. We have certainly not presented a complete

odel for the whole process. Further investigations should com-
ine the yield-stress model and the powder migration model
nto one simulation to observe combined effects. For this pur-
ose, experimental data from Ref. 17 should be incorporated that
elates the yield stress directly to the powder concentration. In

ddition, slip and freezing at the walls should be considered. The
atter is likely to suppress the segregation phenomena slightly
ut not totally, as we see from the experiment, which shows
trong demixing at the walls as well. For the yielded material,

1
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he bi-viscosity-model with its constant viscosity is of course
oo simple and shear-thinning should be added on top of the
ield-stress model to make the rheological behaviour more real-
stic. But it was already tested that shear-thinning alone cannot
eproduce the observed splitting effect. Also the Phillips model
or powder migration is the simplest which one can take and cer-
ainly it has its practical and mathematical flaws, for example a
usp in the steady state that, in the form observed in the Phillips
odel, is unphysical, but, in a rounded form, may be realis-

ic. There are numerous improvements of the Phillips model
7,38,39,40,41,42 that can be implemented in our SPH-model if
eeded. But it is by far more important to investigate this need
y producing more experimental data first.
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